Симметрия в науке, технике и природе

«…быть прекрасным значит быть симметричным и соразмерным».

С давних времен математика считается одной из главных наук. Математика одна из древнейших и необходимых для прогресса разных дисциплин наука.

Числа, формулы, геометрические фигуры в математике, внешне холодные и сухие, но полные внутренней красоты.

  • «Можно ли с помощью симметрии создать порядок, красоту и совершенство?», «Во всём ли в жизни должна быть симметрия?»- эти вопросы мы поставили перед собой уже давно, и попробуем ответить на них в этой работе.

Предметом данного исследования является симметрия как одна из математических основ законов красоты, взаимосвязи науки математики с окружающими нас живыми и неживыми объектами.

Актуальность проблемы заключена в том, чтобы показать, что красота является внешним признаком симметрии и, прежде всего, имеет математическую основу.

Цель работы — на примерах найти и показать симметрию как основу красоты в природе и технике.

Задачи работы:

  • a) собрать информацию по рассматриваемой теме;
  • b) выделить симметрию как математическую основу законов красоты в природе;
  • c) найти математические мотивы в филологии;
  • d) изучить и выделить основные направления применения симметрии, как основы красоты в творчестве человека.

1. Понятие и виды симметрии

Симмемтримя (др.-греч. ухммефсЯб — «соразмерность»), в широком смысле — неизменность при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте).

Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково. Отсутствие или нарушение симметрии называется асимметримей или аритмией.

Основные виды симметрии:

1) Зеркальная симметрия.

Зеркальная симметрия — это тип симметрии объекта, когда объект при операции отражения переходит в себя. Это математическое понятие в оптике описывает соотношение объектов и их (мнимых) изображений при отражении в плоском зеркале. Проявляется во многих законах природы (в кристаллографии, химии, физике, биологии и т.д., а также в искусстве и искусствоведении).

2) Центральная симметрия.

Точка A’ называется симметричной точке А относительно точки О, если О есть середина отрезка AA’; точка О называется центром симметрии. Два параллельных и равных между собой отрезка AB и A’B’, но направленные в противоположные стороны называются обратнопараллельными. Обратная параллельность есть одно из характерных свойств фигур, обладающих центром симметрии.

7 стр., 3304 слов

Симметрия в природе (2)

... основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды — от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и ...

3) Симметрия вращения.

Ось симметрии n-го порядка — линия при полном обороте вокруг которой плоская или пространственная фигура несколько раз приходит в совмещение сама с собой (ось проходит через центр фигуры перпендикулярно плоскости изображения, т.е. на бумаге ось есть точка — проекция оси на плоскость — бумагу).

Число совмещений при полном обороте называется порядком оси, а наименьший угол поворота, при котором фигура совмещается сама с собой, — элементарным углом поворота. На рисунке представлены изображения с осями симметрии следующих порядков: 2, 3, 4, 5, 6, 7 и соответственно элементарными углами поворота — 180, 120, 90, 72 градуса и т.д. Наряду с осью симметрии n-го порядка в каждом из приведенных изображений имеется несколько пересекающихся осей симметрии. Справа помещены два изображения, из которых верхнее можно рассматривать как имеющее ось симметрии 1-го порядка, нижнее — как имеющее ось симметрии 5-го порядка и не имеющие осей симметрии.

2. Симметрия в науке

Понятие симметрии в науке постоянно развивалось и уточнялось. Наука открыла целый мир новых, неизвестных раньше симметрии, поражающий своей сложностью и богатством, — симметрии пространственные и внутренние, глобальные и локальные; даже такие вопросы, как возможность существования антимиров, поиски новых частиц, связаны с понятием симметрии.

В теоретической физике, поведение физической системы описывается некоторыми уравнениями. Если эти уравнения обладают какими-либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин (интегралов движения).

Симметрия в биологии — это закономерное расположение подобных (одинаковых, равных по размеру) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии. Тип симметрии определяет не только общее строение тела, но и возможность развития систем органов животного. Строение тела многих многоклеточных организмов отражает определённые формы симметрии.

Симметрия также важна для химии, так как она объясняет наблюдения в спектроскопии, квантовой химии и кристаллографии.

3. Симметрия в технике

Большинство самых необходимых для нас предметов — от книги, ложки, чайника и молотка до газовой плиты, холодильника и пылесоса — тоже обладает симметрией.

Большинство транспортных средств, от детской коляски до сверхзвукового реактивного воздушного лайнера, предназначенных для движения по земной поверхности или параллельно ей, так же имеют осевую симметрию. симметрия красота математический

Космическая ракета, устремляющаяся вверх, в небо имеет и осевую, и центральную симметрию.

4. Симметрия в природе

В отличие от техники, красота в природе не создаётся, а лишь фиксируется, выражается. Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. К числу таких образов относятся некоторые кристаллы, многие растения.

6 стр., 2996 слов

Симметрия в природе

... состояние. Симметрия в биологии — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии. Симметрией обладают объекты и явления живой природы. Она ...

Лист подчиняется принципу с одновременным уменьшением элементов (направленностью симметрии), цветок отличается соединением радиальной и спиральной (в трех измерениях) симметрии. Подобным образом строятся динамично-симметричные формы раковин, листьев папоротника.

Каждая снежинка — это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией — поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.

В природе существуют тела, обладающие винтовой симметрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если данный угол поделить на 360 градусов — рациональное число, то поворотная ось оказывается также осью переноса.

Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.

Заключение

«Принцип симметрии охватывает все новые области. Из области кристаллографии, физики твердого тела он вошел в область химии, в область молекулярных процессов и в физику атома. Нет сомнения, что его проявления мы найдем в еще более далеком от окружающих нас комплексов мире электрона, и ему подчинены будут явления квантов», — это слова академика В.И. Вернадского, занимавшегося изучением принципов симметрии в неживой природе.

Симметрия, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Можно увидеть, что это кажущаяся простота уведет нас далеко в мир науки и техники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на симметрию).

Приложение

Симметрия в науке

Симметрия в технике

Симметрия в природе