Не только школьники, но даже взрослые иногда задаются вопросом: зачем нужна физика? Особенно эта тема актуальна для родителей учеников, получивших в свое время образование, далекое от физики и техники.
Но как помочь школьнику? Кроме того, учителя могут задать на дом сочинение, в котором нужно описать свои мысли по поводу необходимости изучения науки. Разумеется, лучше данную тему поручить одиннадцатиклассникам, которые имеют полное представление о предмете.
Что такое физика
Говоря простым языком, физика – это наука о природе. Конечно, в настоящее время физика все больше и больше отдаляется от нее, углубляясь в техносферу. Тем не менее предмет тесно связан не только с нашей планетой, но и с космосом.
Так зачем нужна физика? Ее задача – понять, как происходят те или иные явления, почему образуются те или иные процессы. Также желательно стремиться к созданию специальных расчетов, которые помогли бы предугадать те или иные события. Например, как Исаак Ньютон открыл закон всемирного тяготения? Он изучал предмет, падавший сверху вниз, наблюдал за механическими явлениями. Затем создал формулы, которые действительно работают.
Сочинение по физике 8 класс на тему тепловые явления и я
Доклад
на тему:«Тепловые явления в природеи в жизни человека»Выполнилаученица 8 «А» классаКарибова А.В.Армавир, 2010
Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное).
Контрольная работа: Культура как социальное явление: её основные компоненты
... мира и организации деятельности. Как социальное явление язык передается от поколения к поколению путем социализации. Общность языка, как и культуры, в целом, способствует интеграции ... деление на макроуровне разграничивает культуры в зависимости от социокультурных особенностей того или иного региона мира. Например, выделяют такие культуры, как европейская (западная), латиноамериканская, славянская ...
Такие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20—30° С при смене времени года меняет все вокруг нас. От температуры окружающей среды зависит возможность жизни на Земле. Люди добились относительной независимости от окружающей среды после того как научились добывать и поддерживать огонь. Это было одним из величайших открытий, сделанных на заре развития человечества. История развития представлений о природе тепловых явлений — пример того, каким сложным и противоречивым путем постигают научную истину. Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, так как было замечено, что при соударении тел или трении друг о друга они нагреваются. Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем. Вновь был поставлен вопрос о том, что же такое теплота. Наметились две противоположные точки зрения. Согласно одной из них — вещественной теории тепла, теплота рассматривалась как особого рода невесомая «жидкость», способная перетекать из одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела. Согласно другой точке зрения, теплота — это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура. Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова «корпускула» (частица).
Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли. Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании «наибольшей или последней степени холода», когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты. Но все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости — теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас. В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой «жидкости», а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии. Значительный вклад в развитие теорий тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822—1888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844—1906) и другие ученые. Сложилось так, что природа тепловых явлений объясняется в физике двумя способами: термодинамический подход и молекулярно-кинетическая теория вещества. Термодинамический подход рассматривает теплоту с позиции макроскопических свойств вещества(давление, температура, объём, плотность и т.д.).
Кристаллические и аморфные тела
... аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур. ... друг от друга и даже противоречивых представлений, теорий, законов. Симметрия характеризует и знаменует собой ... температуры плавления (конденсации) из газообразного (например, иней и снежинки), жидкого (наиболее часто) и твёрдого аморфного состояний с выделением тепла. ...
Молекулярно-кинетическая теория связывает протекание тепловых яввлений и процессов с особенностями внутреннего строения вещества и изучает причины, которые обуславливают тепловое движение. Итак, рассмотрим тепловые явления в жизни человека. Нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация — все это примеры тепловых явлений. Основной источник тепла на Земле — Солнце. Но, кроме того, люди используют много искусственных источников тепла: костер, печку, водяное отопление, газовые и электрические нагреватели и т.д. Вы знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. При этом чай отдаст часть своего тепла не только ложке, но и окружающему воздуху. Из примера ясно, что тепло может передаваться от тела, более нагретого к телу менее нагретому. Существует три способа передачи теплоты —
теплопроводность, конвекция, излучение
- Нагревание ложки в горячем чае — пример
теплопроводности
- Все металлы обладают хорошей теплопроводностью.
Конвекцией
передается тепло в жидкостях и газах. Когда мы нагреваем воду в кастрюле или чайнике, сначала прогреваются нижние слои воды, они становятся легче и устремляются вверх, уступая место холодной воде. Конвекция происходит в комнате, когда включено отопление. Горячий воздух от батареи поднимается, а холодный опускается. Но ни теплопроводностью, ни конвекцией невозможно объяснить, как, например, далекое от нас Солнце нагревает Землю. В этом случае тепло передается через безвоздушное пространство
излучением
(тепловыми лучами).
Для измерения температуры используется термометр. В обычной жизни пользуются комнатными или медицинскими термометрами. Когда говорят о температуре по Цельсию, то имеют в виду шкалу температур, в которой 0°С соответствует температуре замерзания воды, а 100°С — точка ее кипения. В некоторых странах (США, Великобритания) используют шкалу Фаренгейта. В ней 212°F соответствуют 100°С. Перевод температуры из одной шкалы в другую не очень простой, но в случае необходимости каждый из вас сможет его выполнить самостоятельно. Чтобы перевести температуру по шкале Цельсия в температуру по шкале Фаренгейта, необходимо умножить температуру по Цельсию на 9, разделить на 5 и прибавить 32. Чтобы сделать обратный переход, из температуры по Фаренгейту необходимо вычесть 32, умножить остаток на 5 и разделить на 9. В физике и астрофизике часто используют еще одну шкалу — шкалу Кельвина. В ней за 0 принята самая низкая температура в природе (абсолютный нуль).
Роль Менеделеева в развитии мировой науки
... Действительно, Менделеев не походил на многих химиков его времени, замыкавшихся в узких рамках научных исследований. Он был преемником заветов М.В. Ломоносова: он в химии был физиком, стремился ... ранее. «…Так как науки, подобные химии, обращаются как с идеями, так и с природными явлениями и веществами, - писал Д.И.Менделеев, - то они приучают понимать, что прошлые мысли ...
Она соответствует ?273°С. Единица измерения в этой шкале — Кельвин (К).
Чтобы перевести температуру по Цельсию в температуру по Кельвину, к градусам по Цельсию надо прибавить 273. Например, по Цельсию 100°, а по Кельвину 373 К. Для обратного перевода надо вычесть 273. Например, 0 К это ?273°С. Полезно знать, что температура на поверхности Солнца — 6000 К, а внутри — 15 000 000 К. Температура в космическом пространстве вдали от звезд близка к абсолютному нулю. В природе мы являемся свидетелями тепловых явлений, но порой, не обращаем внимания на их сущность. Например, летом идёт дождь а зимой снег. Образуется роса на листьях. Появляется туман. Знания о тепловых явлениях помогают людям конструировать обогреватели для домов, тепловые двигатели (двигатели внутреннего сгорания, паровые турбины, реактивные двигатели и т. д.), предсказывать погоду, плавить металл, создавать теплоизоляционные и термостойкие материалы, которые используются всюду — от постройки домов до космических кораблей.
Какие разделы есть у физики
Предмет имеет несколько разделов, которые обобщенно или углубленно изучаются в школе:
- механика;
- колебания и волны;
- термодинамика;
- оптика;
- электричество;
- квантовая физика;
- молекулярная физика;
- ядерная физика.
У каждого раздела есть подразделы, подробно изучающие различные процессы. Если не просто изучать теорию, параграфы и лекции, а научиться представлять, экспериментировать с тем, о чем идет речь, то наука покажется весьма интересной, а вы поймете, зачем нужна физика. Сложные науки, которые нельзя применить на практике, например физику атома и ядра, можно рассмотреть по-другому: почитать интересные статьи из научно-популярных журналов, посмотреть документальные фильмы про данную область.
Как помогает предмет в обычной жизни
В сочинении «Зачем нужна физика» рекомендуется приводить примеры, если они уместны. Допустим, если вы описываете, зачем нужно изучать механику, то следует упомянуть случаи из повседневной жизни. Таким примером может стать обычная поездка на автомобиле: от села до города нужно доехать по свободной трассе за 30 минут. Расстояние около 60 километров. Разумеется, нам нужно знать, с какой скоростью лучше перемещаться по дороге, желательно с запасом времени.
Также можно привести пример строительства. Допустим, при возведении дома нужно правильно рассчитать прочность. Нельзя выбирать хлипкий материал. Школьник может провести другой эксперимент, чтобы понять, зачем нужна физика, например, взять длинную доску, поставить по концам стулья. Доска будет располагаться на спинках мебели. Далее следует нагрузить центр доски кирпичами. Доска будет прогибаться. При уменьшении расстояния между стульями прогиб будет меньше. Соответственно, человек получает пищу для размышления.
Слава науке 7 класс (Школьные сочинения)
... науке физике. Физика — это наука, основным предметом изучения которой является природа. В некоторой степени любая наука изучает природу. Подумать только, сколько всего изобретено благодаря науке! Путём развития химии и ... экзафлопной инициативой. Спутник «Ломоносов» и супервычислитель «Ломоносов», наряду с другими ... химии, физике, геологии и металлургии, навигации, многотомные собрания сочинений учё ...
Хозяйка при готовке ужина или обеда часто сталкивается с физическими явлениями: тепло, электричество, механическая работа. Чтобы понимать, как поступить правильно, нужно понимать законы природы. Зачастую многому учит опыт. А физика и есть наука опыта, наблюдений.
Профессии и специальности, связанные с физикой
А вот зачем нужно изучать физику тому, кто оканчивает школу? Конечно, тем, кто поступает в университет или колледж по гуманитарным специальностям, предмет практически не нужен. Но вот в очень многих сферах наука требуется. Давайте рассмотрим в каких:
- геология;
- транспорт;
- электроснабжение;
- электротехника и приборы;
- медицина;
- астрономия;
- строительство и архитектура;
- теплоснабжение;
- газоснабжение;
- водоснабжение и так далее.
Например, даже машинисту поезда нужно знать данную науку, чтобы понимать, как работает локомотив; строитель должен уметь проектировать прочные и долговечные здания.
Программисты, специалисты IT-сферы также должны знать физику, чтобы понимать, как работает электроника, оргтехника. Кроме того, им нужно создавать реалистичные объекты для программ, приложений.
В медицине физика применяется практически всюду: рентгенография, ультразвук, стоматологическое оборудование, лазерная терапия.
С какими науками связана
Физика очень тесно взаимосвязана с математикой, так как при решении задач нужно уметь преобразовывать различные формулы, проводить расчеты и строить графики. Можно добавить данную идею в сочинение «Зачем нужно изучать физику», если речь пойдет о вычислениях.
Также эта наука связана с географией, чтобы понимать природные явления, уметь анализировать грядущие события, погоду.
Биология и химия тоже связаны с физикой. Например, ни одна живая клетка не сможет существовать без гравитации, воздуха. Также живые клетки должны перемещаться в пространстве.
Исторический экскурс
Доклад по физике будет неполным без рассмотрения истории появления науки. В древнем мире людям было доступно ограниченное количество величин для измерения. Сначала научились измерять длину, позже появилось понятие угол. Постепенно появились единицы времени. В Древнем Египте сутки делили на 12 дневных и ночных, продолжительность часа зависела от сезона.
Каждая формула имеет свое лицо: «Слава науке!»
... и применять ее на практике. можно написать краткое мини-сочинение Сочинение на тему «Начинающим путь науки» Я уверен: ... новую полезную технику. «Слава науке» — сочинение, 7 класс Вариант 1 Наука- одна из немногих ... всем, начинающим путь в науке (физике, химии, математике, медицине, астрологии ... наука не стоит на месте. Представляете, что будет ещё лет через пятьсот? Стремление постигать и понимать ...
Постепенно появлялись научные знания:
Как написать сочинение ученику 7-го класса
А теперь давайте поговорим о том, что может написать семиклассник, частично изучивший некоторые разделы физики. Например, можно написать о той же гравитации либо привести пример с измерением расстояния, которое он прошел от одной точки до другой, чтобы вычислить скорость своей ходьбы. Ученик 7 класса сочинение «Зачем нужна физика» может дополнить различными опытами, которые проводились на уроках.
Как видите, творческую работу можно написать вполне интересной. Кроме того, она развивает мышление, дарит новые идеи, пробуждает любопытство к одной из главнейших наук. Ведь в будущем физика может помочь при любых жизненных обстоятельствах: в быту, при выборе профессии, при устройстве на хорошую работу, во время отдыха на природе.
Природные явления
Изначально наука занималась выяснением законов, которые бы объяснили работу окружающего мира. Например, почему появляется радуга после дождя или как образуются молнии и гром.
С помощью этих знаний можно объяснить множество природных явлений:
- Водоплавающие птицы не тонут благодаря архимедовой силе. Большое количество перьев создает воздушную прослойку, которая уменьшает массу тела.
- Летучие мыши ориентируются в полете благодаря эхолокации. Именно за ее счет они не врезаются в твердые поверхности.
- Деревья редко ломаются из-за ветра, потому что ствол и корни — это своеобразный рычаг. Поэтому дерево наклоняется, но не переламывается.
- Скаты, угорь и другие обитатели водных пространств могут вырабатывать электричество. Для этого у них есть специальный орган.
- Рыба-меч не пострадает, если проткнет лодку «острым носом». Все дело в том, что в основании «острия» есть полость, заполненная жиром. Она выполняет роль амортизатора.
-
В дальнейшем наблюдения за животными позволили физикам многое изобрести. Например, амортизаторы устанавливают между вагонами. Они не только сцепляют их, но и смягчают удар .
Авиаконструкторы смогли изобрести летательные аппараты после наблюдения за стрекозами. Их крылья устроены так, что преодолевают вредные колебания воздуха.