Металлы (от латинского metallum — шахта, рудник) — группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло — и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. [5, с.30]
Наука о металлах развивается широкими темпами во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов и сплавов и находить новые пути повышения механических и физико-химических свойств. Создаются сверхтвердые сплавы, сплавы с заранее заданными свойствами, многослойные композиции с широким спектром свойств и многие другие металлические, алмазные и керамико-металлические материалы. [3, с.267]
В современном строительстве металл имеет не менее важное значение, чем бетон, железобетон, каменные и лесные материалы. Из стального проката возводят каркасы промышленных зданий и сооружений, башни, мачты, опоры, мосты, эстакады, резервуары. Широко используют в строительстве и такие металлические изделия, как арматура для железобетона, трубы, болты, заклепки, гвозди. Особое значение в современном строительстве приобрели легкие металлические конструкции зданий и сооружений, применение которых способствует уменьшению трудоемкости, продолжительности и стоимости их монтажа.
Широкое применение металла в строительстве объясняется главным образом наличием свойств, выгодно отличающих его от других строительных материалов,— это высокая прочность, способность к значительным упругим и пластичным деформациям; металл относительно легко поддается обработке давлением (прокатке, ковке, штамповке) и литью; из него можно получать изделия любых профилей. [4, с.129]
1. Классификация металлов
В строительстве обычно применяют не чистые металлы, а сплавы. Наибольшее распространение получили сплавы на основе черных металлов (~94%) и незначительное – сплавы цветных металлов (рис. 1) [1, с.288]
Рис. 1. Классификация металлов и сплавов.
1.1. Сталь углеродистая обыкновенного качества
Решающее влияние на механические свойства в углеродистых сталях оказывает содержание углерода (рис. 2).
Металлы и сплавы как художественный материал
... амфотерны, как правило, взаимодействуют с растворами и кислот, и щелочей. Металлы могут образовывать химические соединения между собой. Такие соединения обычно образуют типичные металлы с металлами, обладающими слабыми металлическими свойствами, ...
При увеличении содержания углерода повышаются прочность, твердость и износоустойчивость, но понижаются пластичность и ударная вязкость, а также ухудшается свариваемость. [6, с.324]
Примесь фосфора вызывает хладноломкость, а примесь серы – красноломкость стали. Для различных марок стали допустимое содержание фосфора 0,04…0,09 %, а серы 0,04…0,7 %. Вредное влияние на свойства стали оказывает кислород: содержание его более 0,03% вызывает старение стали, а более 0,1 % – красноломкость. Примеси марганца и кремния в количестве 0,8…1 % не оказывают практически влияния на механические свойства углеродистых сталей. В стали, предназначенной для сварных конструкций, содержание кремния не должно превышать 0,12…0,25 %. Содержание азота повышает прочность и твердость стали и снижает пластичность. [5, с.35]
Рис. 2. Влияние углерода на механические свойства отожженных сталей.
При обозначении марок стали могут быть указаны: группы, по которым сталь поставляется («А» – по механическим свойствам, «Б» – по химическому составу, «B» – по механическим свойствам и дополнительным требованиям по химическому составу); методу производства («М» – мартеновский, «Б» – бессемеровский, «K» – кислородно-конвертерный); дополнительные индексы («сп» – спокойная сталь, «пс» – полуспокойная Сталь, «кп» – кипящая сталь).
В группе «А» индекс «М» часто опускается, но имеется в виду сталь мартеновская, а при отсутствии индексов «сп», «пс», «кп» имеется в виду сталь спокойная. [3, с.129]
Спокойная сталь является более качественной, но по стоимости она на 12 -15 % дороже кипящей. Полуспокойная сталь занимает по свойствам промежуточное положение между спокойной и кипящей сталью, но в результате и незначительного расхода раскислителей стоимость ее меньше, чем спокойной.
Механические характеристики стали зависят также от формы и толщины проката. Углеродистые стали обыкновенного качества применяют без термообработки. В таблице 1 приведены нормы на механические свойства стали углеродистой обыкновенного качества (группа А).
[6, с.318]
Таблица 1
Сталь углеродистая обыкновенного качества.
Марки стали группы А |
Предел прочности при растяжении, МПа |
Предел текучести, МПа |
Относительное удлинение, % |
Ст0 Ст1сп, пс Ст2сп, пс Ст3сп, пс Ст3Гпс Ст4сп, пс Ст5Гпс Ст6сп, пс |
310 320…420 340…440 380…490 380…500 420…540 460…600 Не менее 600 |
– – 200…230 210…250 210…250 240…270 260…290 300…320 |
20…30 31…34 29…32 23…26 23…26 21…24 17…20 12…15 |
1.2. Сталь углеродистая качественная конструкционная
Качественная конструкционная сталь выплавляется в мартеновских и электрических печах (спокойная, полуспокойная, кипящая).
В зависимости от химического состава эта сталь делится на две группы: I – с нормальным содержанием марганца и II – с повышенным содержанием марганца. Марки стали и требования к механическим свойствам стали I группы в состоянии нормализации приведены в таблице 2. В марке стали двузначные цифры означают среднее содержание углерода в сотых долях процента. Сталь в соответствии с требованиями может поставляться в термически обработанном состоянии (отожженная, нормализованная, высокоотпущенная).
[6, с.327]
Инструментальные качественные углеродистые стали предназначены для изготовления режущего, мерительного и штамповочного инструмента небольших размеров. Марки этих сталей обозначаются буквой У и цифрой, показывающей содержание углерода в десятых долях процента (У7, У8, У9,…, У13).
Высококачественные стали имеют низкое содержание серы (до 0,02 %) и фосфора (до 0,03%), меньше неметаллических включений, обладают повышенными механическими свойствами. В обозначениях марок высококачественных сталей в отличие от качественных ставится буква А. [8, с.224]
Таблица 2
Сталь углеродистая качественная по ГОСТ 2050-74
Марки стали |
Содержание углерода, % |
Предел прочности при растяжении, МПа |
Предел текучести, МПа |
Относительное удлинение, % |
08 кп, пс 10 кп, пс 15 кп, пс 20 кп, пс 25 – 30 – 35 – 40 – 45 – 50 – 60 – 70 – 80 – |
0,05…0,11 0,07…0,14 0,12…0,19 0,17…0,24 0,22…0,30 0,27…0,35 0,32…0,40 0,37…0,45 0,42…0,50 0,47…0,55 0,57…0,65 0,67…0,75 0,77…0,85 |
330 340 380 420 460 500 540 580 610 640 690 730 1100 |
200 210 230 250 280 300 320 340 360 380 410 430 950 |
35 31 27 25 23 21 20 19 16 14 12 9 6 |
1.3. Сталь легированная
При введении в углеродистые стали специальных легирующих добавок (Cr, Mn, Ni, Si, W, Mo, Ti, Co, V) достигается значительное улучшение их физико-механических свойств (например, повышение предела текучести без снижения пластичности и ударной вязкости).
[1, с.293]
Легирующие добавки, растворяясь в железе, искажают и нарушают симметрию его кристаллической решетки, так как они имеют другие атомные размеры и строение внешних электронных оболочек. Чаще всего увеличивается карбидосодержащая фаза за счет уменьшения углерода в перлите, что соответственно увеличивает прочность стали. Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно повышает вязкость стали. Некоторые легирующие элементы расширяют область аустенита, снижая критические точки Ас3, а другие, наоборот, сужают эту область. Большое значение на практике имеет способность большинства легирующих элементов повышать прокаливаемость стали на значительную толщину, задерживая переход аустенита в другие структуры, что создает возможность закаливать стали при умеренных скоростях охлаждения. При этом уменьшаются внутренние напряжения и снижается опасность появления закалочных трещин. [3, с.128]
Согласно существующим стандартам легированные стали классифицируют по назначению, химическому составу и микроструктуре.
- По назначению легированные стали разделяют на три класса: конструкционные (машиноподелочные и строительные), инструментальные и стали с особыми физико-химическими свойствами.
Для обозначения марок сталей принята буквенно – цифровая система. Легирующие элементы обозначаются буквами: С – кремний, Г – марганец, X – хром, Н – никель, М – молибден, В – вольфрам, Р – бор, Т – титан, Ю – алюминий, Ф – ванадий, Ц – цирконий, Б – ниобий, А – азот, Д – медь, К – кобальт, П – фосфор. Цифры, стоящие перед буквами, показывают содержание углерода в конструкционных сталях в сотых долях процента, в инструментальных — в десятых долях процента. Цифры, стоящие за буквами, показывают содержание легирующих элементов в процентах. Если содержание элементов не превышает 1,5 %, то цифры не ставят. Буква А, стоящая в конце марки, означает, что сталь высококачественная. Например, сталь марки 35ХНЗМА – высококачественная, содержащая 0,35 % С, 1 % Сг, 3 % Ni, 1 % Mo. [9, с.178]
- По химическому составу легированные стали делят на три класса: низколегированные с общим содержанием легирующих элементов до 2,5 %;
- среднелегированные – от 2,5 до 10% и высоколегированные, содержащие более 10 % таких элементов, например нержавеющая сталь 1Х18Н9.
— В зависимости от структуры, которую получают легированные стали после нормализации, их делят на пять классов: перлитная, мартенситная, аустенитная, ферритная и карбидная (ледебуритная).
Большинство конструкционных и инструментальных сталей относится к сталям перлитного класса. Такие стали содержат незначительное количество легирующих элементов (не более 5…6 %), хорошо обрабатываются давлением и резанием.